IMO
IMO 2021 5
Dos ardillas, Ardi y Dilla, han recolectado $2021$ nueces para el invierno. Ardi numera las nueces desde $1$ hasta $2021$, y excava $2021$ pequeños hoyos en el suelo en una disposición circular alrededor de su árbol favorito. A la mañana siguiente, Ardi observa que Dilla ha colocado una nuez en cada hoyo, pero sin tener en cuenta la numeración. No contenta con esto, Ardi decide reordenar las nueces realizando una secuencia de $2021$ movimientos. En el $k$-ésimo movimiento Ardi intercambia las posiciones de las dos nueces adyacentes a la nuez con el número $k$. Probar que existe un valor de $k$ tal que, en el $k$-ésimo movimiento, las nueces intercambiadas tienen números $a$ y $b$ tales que $a \lt k \lt b$.
• Solución
• Regreso a IMO 2021