IMO
IMO 2014 1
Sea $a_0 \lt a_1 \lt a_2 \lt \dots$ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que
\[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\]
• Solución
• Regreso a IMO 2014