IMO
IMO 2011 6
Sea $ABC$ un triángulo acutángulo cuya circunferencia circunscrita es $\Gamma$. Sea $\ell$ una recta tangente a $\Gamma$, y sean $\ell_a$, $\ell_b$ y $\ell_c$ las rectas que se obtienen al reflejar $\ell$ con respecto a las rectas $BC$, $CA$ y $AB$, respectivamente. Demostrar que la circunferencia circunscrita del triángulo determinado por las rectas $\ell_a$, $\ell_b$ y $\ell_c$ es tangente a la circunferencia $\Gamma$.
• Solución
• Regreso a IMO 2011