IMO
IMO 2010 4
Sea $\Gamma$ la circunferencia circunscrita al triángulo $ABC$ y $P$ un punto en el interior del triángulo. Las rectas $AP$, $BP$ y $CP$ cortan de nuevo a $\Gamma$ en los puntos $K$, $L$ y $M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Si se tiene que $SC = SP$, demuestre que $MK = ML$.
• Solución
• Regreso a IMO 2010